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Introduction. This is an overview of my research on rotational symmetries and Gauss congruence

which I am presenting at Q) TMC 2025. You can find the full work on the arXiv. There are lots of
directions that this work could still go, so please reach out if you would like to collaborate!

Background

As a combinatorist, you probably have a favourite integer sequence, and a sequence of sets it
enumerates. For example, if your favourite numbers are the Catalan numbers you might know
about non-crossing matchings.
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If X,, is the set of non-crossing matchings on n vertices, then we have

0 = 4X, = {Catn/g if n even,

0 otherwise.

Many integer sequences also have polynomial analogues, usually called g-analogues. For the Cata-
lan numbers, we set [n], ;== 14+ g+ -+ ¢* ! for every n > 1 and

_ 1 2n| 1 2n], - - - [2]4[1],
(Catn], = n+ 1], {nL gl [Uglnlg - 1y

It turns out that the denominator always cancels, so these are integer polynomials. We define a
polynomial analogue of a,, by f,,(¢q) := [Cat, /2], when n is even and f,,(¢q) := 0 otherwise.

A natural question is whether there is a relation between the set analogue X,, and the polynomial
analogue f,(¢). The answer is a resounding yes!

Theorem. Let X, 4 be the set of non-crossing matchings on n vertices with d-fold rotational
symmetry. The number of such elements is given by the polynomial evaluation

#Xn;d = fn(Cd)

for every d | n, where (4 is the primitive d*" root of unity e?™/?.

For example, f5(q) = 1+¢*+¢*+¢* +4° and f5((2) = fs(—1) = 3 counts the number of non-crossing
matchings on six vertices with 2-fold rotational symmetry.


https://queertransmath.com/n/QTMC-2025/
https://arxiv.org/abs/2410.05678

(Personal) motivation

The relation between X,, and f,(q) above is an example of the cyclic sieving phenomenon, which
has become a popular theme in enumerative combinatorics since it was first described in the
2000s. I learnt about it during my first meeting with my Honours supervisor, where I was shown
the following theorem of Rhoades (2010).

Theorem. Let A - n be a rectangular partition and X, the set of standard Young tableaux with
shape A. Suppose the cyclic group C, acts on X, by the jeu de taquin promotion map, and let
fr(q) be the following g-analogue to the classical hook length formula:

[n)y---[1]q
[Lealh()ly

Then the number of tableaux with d-fold rotational symmetry under this action is f((y).

) =

What a miracle! When ) is a rectangle of size 2 x n, there is a natural bijection beween standard
Young tableaux and non-crossing matchings, and we recover our first example as a corollary.

Since seeing this theorem, it became a dream of mine to prove a cyclic sieving result of my own. I
also wanted to build understanding of why cyclic sieving results happen, because many proofs in
the literature are calculation-heavy and lack conceptual motivation.

Key idea

To summarise, we want to find a sequence of sets (X,) and a sequence of polynomials (f,(q)),
such that the subset X,,.; C X,, of elements having d-fold rotational symmetry under some natural
rotation action is counted by f,,((4) for every d | n.

When solving a hard existence problem, a common trick is to add constraints which provide
additional structure. This was the key idea which sparked this project.

Assumption. For every d | n, we have #X,,.4 = #X,, /4.

Known results

Examples of cyclic sieving phenomena satisfying this assumption were termed Lyndon-like sieving
in work by Alexandersson, Linusson and Potka (2019), due to an initial example involving Lyndon
words. By classical theory of rotational symmetries, under the assumption, the enumerating
sequence (a,) given by a, := #X,, satisfies the condition of Gauss congruence, meaning

1
- ; w(d)ayq € Z

for every n > 1, where p is the number-theoretic Mobius function. Intriguingly, a sequence (a,)
satisfies Gauss congruence if and only if there is an integer sequence (¢, ), which we call the colour
sequence (more on this later!), such for every n > 1:

Qp = C1Gp—1 + C2Gp_o + -+ + Cp_101 + NCy. (Q)


https://en.wikipedia.org/wiki/Cyclic_sieving
https://arxiv.org/abs/1005.2568
https://en.wikipedia.org/wiki/Young_tableau
https://en.wikipedia.org/wiki/Jeu_de_taquin
https://en.wikipedia.org/wiki/Hook_length_formula
https://arxiv.org/abs/1903.01327
https://en.wikipedia.org/wiki/Lyndon_word
https://en.wikipedia.org/wiki/Lyndon_word
https://en.wikipedia.org/wiki/Gauss_congruence

This fact often goes unmentioned in papers about Gauss congruence', but will be very important
for the construction of our sets X,,.

On the polynomial side, the assumption that #X,.q = #X,/q for every d | n translates to the
arithmetic identity f,,(Ca) = fnja(1). Gorodetsky (2019) proved that this condition is equivalent
to requiring that

ﬁ S 1ld) fuyala) € Zld)
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for every n > 1. Observe that this is simply a g-analogue of Gauss congruence.

In fact, if (X,,) is any sequence of sets satisfying the assumption, and (f,(q)) is any sequence of
integer polynomials satisfying ¢g-Gauss congruence such that f,(1) = #X,, for every n > 1, then
we obtain an example of the cyclic sieving phenomenon.

Main result

The main result of my paper is a general method for obtaining examples of the above. Finding
sequences satisfying Gauss congruence is easy: just scrape the OEIS. I give multiple methods for
finding a ¢-Gauss congruence (f,(¢)) which specialises to a given Gauss congruence (a,) under
q = 1, all of which are new, but too tedious to cover here.

Instead, we will focus on constructing the sets (X,,) using a novel combinatorial object called a
festoon. Fixing a nonnegative integer sequence (¢;), a festoon of size n is a circular arrangement of
beads with total length n, where beads of length i are coloured in one of ¢; ways. If ¢,, = 2 for every
n > 1, then the title image gives examples of festoons of size 8. The main theorem exemplifies the
cyclic sieving phenomenon for an arbtirary colour sequence, and we give specific examples of this
in the next section.

Theorem. Let (a,) be a Gauss congruence whose colour sequence (¢,) from (©) is nonnegative,
and (f.(q)) an associated g-Gauss congruence. Let X,, be the set of festoons of size n. Then the
number of such festoons with d-fold rotational symmetry for every d | n is

#Xn;d = #Xn/d = Qp/d = fn/d(l) = fn(Cd)

so we obtain an example of the cyclic sieving phenomenon.

Examples

Necklaces

If (¢,) = (7,0,0,...), then (V) gives a; = v and a,, = ya,—1 for n > 1, so a,, = y". The set X, is
the set of necklaces with n beads, with each coloured in one of v ways.

ILiterature is hard to track down because there are many competing names for sequences satisfying Gauss
congruence, such as Gauss sequences, Newton sequences, Fermat sequences, double Fermat sequences and Dold
sequences. We have of course solved the issue.


https://arxiv.org/abs/1805.01254v2
https://oeis.org/
https://xkcd.com/927/

Lucas numbers

If (¢,) = (1,1,0,0,...), then (©) gives a3 = 1, as = 3 and a,, = a1 + a2 for n > 2, so a,, are
the Lucas numbers. If we colour the two beads as

@  and

then X,, becomes cyclic binary words of length n where the 1s are never adjacent.

In this case the g-Gauss congruence we obtain with our methods is

¥ (q)szﬂ{”_k]
" —n—kgl k |,
Central Delannoy numbers

If ¢, = sch,_; where sch,, are the small Schroder numbers, then (a,) is the sequence of central
Delannoy numbers, which count the number of tubings on the cycle graph with n vertices. We
prove this both with a novel bijection, and using the theory of Riordan arrays.

COC

The associated g-Gauss congruence in this case is
n—1
{n—i—/{:—l} {n—l}
k=0 k q k q

Refining counts

The polynomials in the previous two examples involve a sum over k. Both have combinatorial
meaning, counting the number of ones in each binary word and the number of tubes in each tubing
respectively. Our methods allow us to describe cyclic sieving phenomena indexed by parameters.

For example, if X, ,, n,... is the set of festoons of size n = ny + 2ny + 3ns + - -+ containing n;
monocoloured beads of length ¢ for every ¢ > 1, we obtain a cyclic phenomenon with

Jrmi o, (@) = o {

n1+n2+--}
DETa )

ni,nag,...
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https://en.wikipedia.org/wiki/Lucas_number
https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number
https://en.wikipedia.org/wiki/Delannoy_number
https://en.wikipedia.org/wiki/Delannoy_number
https://en.wikipedia.org/wiki/Riordan_array

Further directions

Here is a sketch of other results which appear in the work, and ideas for future research. Please
talk to me if you are interested in this kind of thing, I would love to collaborate!

More examples

The OEIS has many more examples of Gauss congruences for which it is not obvious what a
combinatorially-natural set X, should be, other than the brute-force festoon description.

For example, if a, is the number of solutions to 2% + y? + 2* + w? = n, then (a,) satisfies Gauss
congruence. This is the ©-series for the lattice Z*, so take X,, to be the set of points in Z* with a
square-distance from the origin of n. How do we find a natural action of the cyclic group which
satisfies our assumption?

Gauss congruences from matrices

If M is an integer matrix, then a, = tr(M") satisfies Gauss congruence. Gorodetsky observed that
we get a ¢-Gauss congruence for the Lucas numbers by taking

o (S )

Can we do this in general? Is it possible to determine an appropriate g-analogue M (q) with
M(1) = M such that tr(M(1)M(q) --- M(q"')) satisfies g-Gauss congruence?

Negative colour values

There are plenty of important Gauss congruences which have negative ¢, values. We don’t get the
cyclic sieving phenomenon anymore, but by counting signed festoons (which are negative when
they contain an odd number of ‘negative’ beads), we can still find a set analogue. Can we develop
this theory further?

Semigroups

We extend our notion of Gauss congruence to sequences indexed not just by the positive integers,
but by a ranked semigroup with finite decomposition. Using this theory, many well-known examples
of cyclic sieving turn out to satisfy our assumption, just under a different semigroup.

Most examples simply involve adding new parameters, as we discussed in the previous section.
Can we find less trivial examples of this?

Other congruences

The Catalan-based cyclic sieving described in our first section does not satisfy Gauss congruence.
Is there a similar Catalan-type theory that can be developed? What is the appropriate notion of
congruence, and how do we find the g-analogue? Which well-known examples of cyclic sieving fit
into these different types of congruences?



